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A new stochastic model for the motion of particle pairs in isotropic high-Reynolds- 
number turbulence is proposed. The model is three-dimensional and its formulation 
takes account of recent improvements in the understanding of one-particle models. 
In  particular the model is designed so that if the particle pairs are initially well mixed 
in the fluid, they will remain so. In  contrast to previous models, the new model leads 
to a prediction for the particle separation probability density function which is in 
qualitative agreement with inertial subrange theory. The values of concentration 
variance from the model show encouraging agreement with experimental data. The 
model results suggest that, a t  large times, the intensity of concentration fluctuations 
(i.e. standard deviation of concentration divided by mean concentration) tends to 
zero in stationary conditions and to a constant in decaying turbulence. 

1. Introduction 
Although the behaviour of the ensemble average concentration of a passive tracer 

dispersing in a turbulent flow is quite well understood, there is still much to learn 
about concentration fluctuations. For example, there is no consensus in the literature 
on the value of the intensity of concentration fluctuations (i.e. standard deviation of 
concentration divided by mean concentration) a t  large times after a release, 
estimates-of this quantity varying between zero and infinity (see, for example, the 
discussion given by Sawford & Hunt 1986). In  spite of these problems, a number of 
techniques have been developed for the calculation of the concentration variance. 
None of these methods is exact, the complexity and nonlinearity of turbulent flows 
prohibiting the exact calculation of concentration statistics direc.tly from the 
governing equations. Among the methods which deserve mention are high-order 
closure models (Newman, Launder & Lumley 1981 ; Sykes, Lewellen & Parker 19841, 
probability density function (p.d.f.) methods (Pope 1985; Anand & Pope 1985), 
stochastic models for the motions of particle-pairs (Durbin 1980) and two-point 
closure models (Lesieur 1987). 

Concentration variance is intimately connected with the statistics of the 
trajectories of pairs of particles, and so stochastic models for the motion of particle 
pairs can be regarded as one of the more natural approaches to the problem. They 
have an advantage over the one-point high-order closure and p.d.f. methods in that 
the influence of the lengthscale of the concentration field is automatically accounted 

t Also Department of Mathematics and Statistics, Brunel University. 
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for in a natural way. One consequence of this is that  they can treat multiple sources, 
including the effect of correlations between the concentration from different sources. 
As indicated below, they can be regarded as a type of two-point closure model in 
which, in contrast to  many more conventional two-point closures, no quasi-Gaussian 
assumption for the joint (two-point) p.d. f. of velocity and concentration is needed. 
Unlike p.d.f. methods, they do not seek to  describe the probability distribution of the 
concentration, but merely its mean and variance. 

The idea of using a model of the motion of particle pairs to  estimate concentration 
variance via the numerical simulation of many particle-pair trajectories was first 
suggested in an imaginative and important paper by Durbin (1980). Since then such 
models have been discussed quite widely and have had some success in comparison 
with experimental data (Durbin 1982; Sawford 1985; Stapountzis et al. 1986). 
Howcver, the correct way to formulate such models has not been investigated in 
detail. Recently a number of theoretical problems have been identified in connection 
with such models. For example, if the particle pairs in some of these models are well- 
mixed initially they will not remain so (Thomson 1986b). Also the majority of the 
models proposed to date are one-dimensional while the mixing processes which affect 
concentration variance are essentially three-dimensional. One consequence of this is 
that it is impossible to satisfy certain physical constraints in a one-dimensional 
model (Thomson 1986b). A number of two-particle models have been proposed to 
date (Durbin 1980; Lamb 1981; Sawford 1982; Gifford 1982; Lee & Stone 1983; 
Sawford & Hunt 1986), although the models of Gifford (1982) and Lee & Stone (1983) 
were intended for following clusters of particles rather than just pairs of particles. 
These models can be divided into two classes according to the predicted shape of the 
particle separation p.d.f. (Sawford 1983). The majority of the models (Lamb 1981 ; 
Sawford 1982; Gifford 1982; Lee & Stone 1983) predict that the p.d.f. is Gaussian (at 
least for initially coincident particles), while Durbin’s (1980) model leads to a 
strongly peaked p.d.f. which tends to infinity a t  the origin. This difference in shape 
is important as it leads to very different predictions for the concentration fluctuations 
in some situations. Neither of these shapes seems very plausible, inertial subrange 
theory predicting that the p.d.f. should vary like a-/3rx near r = 0 (where r is the 
magnitude of the particle separation). This sheds some doubt on whether any of 
the stochastic models are showing the correct qualitative behaviour. 

It is the thesis of this paper that some understanding of these problems can be 
obtained by considering recent developments in the theory of one-particle models 
(Van Dop, Nieuwstadt & Hunt 1985; Thomson 1987). These developments show 
that, in inhomogeneous turbulence, one-particle stochastic models can be badly in 
error unless they are formulated carefully. Consider, for example, a horizontally 
homogeneous situation with a vertical gradient in the vertical velocity variance uk. 
In such a situation the particles passing through a given point have a non-zero mean 
vertical acceleration even when there is no mean vertical Eulerian velocity. Failure 
to include this mean acceleration results in a sit,uation where a tracer which is 
initially well mixed becomes ‘ un-mixed ’ and non-uniform in space a t  later times. 
The way in which such effects should be included in one-particle models is now well 
underst,ood (Thomson 1987). Such problems are also likely to occur in two-particle 
models even in homogeneous turbulence. This is because of the variation of the two- 
point velocity covariance with the separation between the two points, something 
which is analogous to the variation of uk with height in a one-particle model. 

The aim of this paper is (i) to apply our understanding of one-particle models to 
the design of a three-dimensional two-particle model, (ii) to investigate whether such 
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a model overcomes the theoretical problems described above and results in a particle 
separation p.d.f. which is consistent with inertial subrange theory, and (iii) to 
compare the resulting predictions for concentration variance with experimental 
data. Some initial steps in this direction were taken by Thomson (1986 b )  using a one- 
dimensional model. 

In $2 the basic ideas behind two-particle models and their relation to one-particle 
models are described, and in $ 3  the role of molecular diffusion in such models is 
discussed. The new two-particle model is described in $ 4  and its formulation is 
compared with that of other models. Some properties of the new model are 
investigated in $ 5 ,  in particular the shape of the particle separation p.d.f. Finally, 
predictions for the concentration variance are presented and compared with 
experimental data in $6. 

2. Basic concepts 
It is useful to think of the tracer as consisting of many particles, a particle being 

an element of tracer which retains its identity. In  the case of a particulate tracer, this 
agrees with the usual meaning of particle, while, in a tracer consisting of separate 
molecules, the particles are simply the molecules. The particles are assumed to be 
sufficiently small and numerous that the particle Concentration can be regarded as a 
continuous quantity c(x, t ) .  Only passive tracers will be considered here; more 
specifically, it is assumed that the presence of the tracer does not affect the velocity 
field u(x, t )  and that c satisfies the advection-diffusion equation 

(1) a c p t  + v . (uC) = v - ( K ~ C ) ,  

where K is the diffusivity resulting from random molecular (or Brownian) motions. In  
the following K will be assumed constant. In  Lagrangian terms, the assumptions 
embodied in (1) are equivalent to assuming that the particle trajectories x ( t )  satisfy 
the stochastic differential equation 

d x  = u ( x , t ) d t + ( 2 ~ ) f d <  (2) 
(Schuss 1980) where the components of d< are the increments of independent Wiener 
processes (a Wiener process, sometimes called a Brownian motion, is a Gaussian 
process whose increments are independent with mean zero and variance dt - see e.g. 
Schuss 1980). In  the following, molecular and Brownian motions are referred to as 
molecular for simplicity. Except where indicated the flow is assumed to be 
incompressible with constant density p. 

The motion of pairs of particles plays a central role in the study of concentration 
fluctuations. Some insight into the motion of particle pairs can be achieved by 
regarding a particle pair whose particles are located a t  x, and x, as a single entity 
located a t  the point X = (x,, x,) in a six-dimensional space. It follows from (2) that 
the particle-pair trajectories X( t )  are solutions of the stochastic differential equation 

d X  = U(X,  t )  dt+ ( 2 ~ ) i d c ,  (3) 
where U(X, 2) is the velocity field (u(x,, t ) ,  u(x,, t ) )  in X-space. This result can also be 
expressed in Eulerian terms as follows. Let C ( X , t )  denote the concentration of 
particle pairs in X-space. The number of particle pairs in the elemental volume 
dx, dx, centred on (x,, x,) in X-space is equal to the product of the number of particles 
in the elemental volume dx, centred on x1 and the number in the volume dx, centred 
on x,. Hence C ( X ,  t )  = c(x,, t )  c(x,, t ) .  It follows from (1) that C satisfies 

aclat + v. ( uc) = v . p c ) .  (4) 
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This equation can also be derived directly as the Pokker-Planck equation of the 
process (3).  Comparison of (1) and (4) or (2) and (3) shows that the particle pairs are 
advected and diffused in X-space in the same way as single particles are advected and 
diffused in x-space. In  the following the first three and last three components of U 
will sometimes be denoted by ul and u, respectively, so that U = (ul, u,). 

Throughout this paper we follow the statistical approach to turbulent flows, i.e. we 
regard the flow as a member of an ensemble of flows with identical external 
conditions (Monin & Yaglom 1971, p. 209) and consider only ensemble average 
quantities. Such averages will be denoted by angled brackets. The basic mathe- 
matical objects which arise in the statistical theory of turbulent dispersion are the 
n-particle transition probability distributions. Here we are only concerned with the 
first two of t'hese which are defined as follows : Pl(A, t 1 y ,  s) is the probability of a 
particle trajectory, x( t ) ,  satisfying x ( t )  E A  given that x(s) = y ,  and P,(A,, A,, t,, t ,  [ y l ,  
y , ,  sl, s,) is the probability that two particle trajectories, xs(t ) ,  i = 1,2,  satisfy 
x,(t,) E Ai given that xi(si)  = y, .  A ,  A ,  and A ,  are subsets of 0, the space occupied by 
the fluid. The p.d.f.s associated with the probability distributions Pl and P, will be 
denoted by p ,  and p,. 

The reason why Pl and P, are important quantities is that they determine the 
first- and second-order moments of c (see, for example, Egbert & Baker 1984). 
Consider a particular realization drawn from the ensemble of flows. In  this 
realization, let S(x, t )  be the source strength (i.e. the amount of tracer released per 
unit space-time volume). Although in many problems the source strength is 
deterministic (i.e. S is the same in every realization) it is useful to allow for the 
possibility of random sources (see Durbin 1982). I n  order to make progress, however, 
it is necessary to assume that S is independent of the flow field u. In  this case (c(x, 
t ) )  and (c(x,, t , )  c(x,, t,)) are given by 

(W t ) )  = P , ( X ,  t IY, 4 S l ( Y j  8) dY ds ( 5 )  s,,, 
and 

(C(Xl%tl)  c(x,, 4)) = c 
where Sl(y ,  s) = ( S ( y ,  s ) )  is the ensemble average source strength for particles of 
tracer and S , ( y l , y z ,  sl, s,) = ( S ( y l ,  s l )S (y , ,  s,)) is the ensemble average source 
strength for particle pairs. Equations ( 5 )  and (6) also hold in flows where p is not 
constant, although the condition that S is independent of the flow field u must be 
replaced by the requirement that X/p  is independent of u and p (Thomson 1987). 

As well as being of interest in their own right, knowledge of ( c ( x , t ) )  and 
(c(xl, t,) c(x,, t , ) )  enables other quantities to be calculated. In  many applications the 
average of c ( x , t )  over some space-time volume is of interest and the mean and 
variance of this quantity can be calculated. It is also possible to calculate the second- 
order moments of the spread of the cloud of tracer relative to its centre of mass from 
(c(x, t ) )  and (c(x,, t l )  c(x,, t,)) (Batchelor 1952). 

p, andp, possess certain symmetry relations (Egbert & Baker 1984). Although this 
paper is only concerned with constant density flows it is useful to derive these 
relations in greater generality. This is because it enables us to obtain some insight 
into the model of Durbin (1980) which, although intended to represent diffusion in 
constant density flows, does not admit a well-mixed distribution of particle pairs 
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which is consistent with the constancy of p. Suppose that the tracer is well mixed in 
the fluid and choose a particle of tracer a t  random. Now consider the probability of 
i t  lying, a t  time t ,  in the elemental region dx surrounding the point x and, a t  time 
s, in the region dy surrounding the point y .  This probability is equal to the 
probability of it occupying the region dx a t  time t given that it occupies dy at  
time s (i.e. p l ( x ,  t ( y ,  s) dx) times the probability of i t  occupying dy a t  time s (i.e. 
(p(y ,s) )dy/M where M is the total mass of the fluid). Hence the probability 
equals p , (x ,  t 1 y ,  s )  (p(y ,  s)) dx dy/M. By symmetry, the probability is also given by 
P,(Y, s I x ,  t )  ( p ( x ,  t ) )  dx dY/M and so 

P l ( x , t l Y , 4 < p ( Y > s ) )  = Pl (Y , s lx> t )  ( p ( x , t ) ) .  (7)  
Similarly, by considering a pair of particles chosen at  random, 

P2(% x2,t1> t 2  lYl,Y,> 819 82)  (P(Y1 ,  s1)P(Yz, 8 2 ) )  

= P,(Yl ,Y , ,  $ 1 3  $2 I x1, X , > t l >  t 2 )  (P(X1, tJp(x2, t 2 ) ) .  (8 )  
# 

If p is constant, it follows that (5) and (6) can be expressed in the form 

( c ( x , t ) )  = P, (Y>s lx , t )S l (Y , s )dyds  s,,, 
and 

(c(x1,tJ c(x2, t z ) )  = J P,dy ,>Y ,~  s1>s2 I Xl,X2’tl,t2)XZ(Yl,Y2,Sl,S2) dY,ds,dy,ds,. 

(9) 
s,<t , ,s ,<t ,  

These equations are the so-called ‘reverse ’ formulation of the ‘forward ’ equations ( 5 )  
and (6). In  flows where p is not constant these equations are not valid and (9) must 
be replaced by 

(c (x lJ l )c (x2Jz) )  
(P ( X l ,  tAP(x2, t2)) 

In  addition to these symmetry properties, Pl and Pz must obviously satisfy 

P,(A t l Y , S )  = P , ( A Q ,  t,t ,lY,Y,, 8382) .  (11) 

The problem with ( 5 )  and (6) is that Pl and P, cannot (with the present state of 
mathematical knowledge) be expressed exactly in terms of the Eulerian properties 
of the flow. Hence models are needed. One of the most natural approaches is to use 
stochastic models for the motion of single particles and particle pairs. Although 
single-particle models are now well understood and have been widely applied (e.g. 
Ley & Thomson 1983; Van Dop et al. 1985; De Baas et al. 1986; Thomson 1987), 
experience with two-particle models is much more limited. Because the particle pairs 
are advected and diffused in X-space in the same way as single particles are in x- 
space, it might be thought that the construction of a stochastic model for the motion 
of particle pairs would not be significantly more difficult than for single particles. 
However, there are some complications owing to the special nature of the flow field 
U. Firstly, because the joint distribution of u(x,)  and u(x,)  depends on the separation 
x1 - x2, the field U is always inhomogeneous, even in homogeneous turbulence. This 
is not a serious problem, but implies that the ideas developed for one-particle models 
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in inhomogeneous turbulence (Van Dop et al. 1985; Thomson 1987) need to be taken 
into account when designing a two-particle model. Secondly, the first three 
components of U are independent of x, and the second three are independent of x,. 
This is a property of U which has no analogue in u. Although this property results 
in some theoretical complications (see the end of §4.1), these appear to be 
unimportant in practice. Finally, if r denotes the subspace of points X = (xl, x,) 
with x, = x,, then, at points in r, the direction of Ulies within T(i.e. u(x l ,  t )  = u(x,, t )  
if x, = x,), thereby preventing particle pairs escaping from the subspace r except 
by molecular diffusion. In other words, if the two particles in the pair are coincidentt, 
they can only be separated by molccular processes. This complication is discussed in 
the next section. 

3. Molecular diffusion in stochastic models 
The formulation of stochastic models for the motion of single particles or particle 

pairs is complicated by the presence of molecular diffusion. I n  flows with high 
Reynolds (Re) and PBclet (Pe) numbers, such as the atmosphere, it seems very likely 
that, except very close to a small source, the effect of molecular diffusion on P, and 
(c) is small. Although this has not been proved rigorously, the intuitive argument 
given by Saffman (1960) is very convincing. Hence the one-particle models used to 
calculate PI and (c) can be formulated on the assumption that the particles of tracer 
move at the local velocity of the fluid. 

The situation for two-particle models is rather more complex. Consider the motion 
of a particle pair with trajectory X(t )  = ( x l ( t ) , x 2 ( t ) )  in X-space. Re and Pe are 
assumed large. If the particle separation is large i t  seems likely, as in the one-particle 
case, that the effect of molecular diffusion on the motion of the particle pair is 
negligible in comparison to the effect of the turbulence. At large separations the fluid 
viscosity v also has a negligible effect on the pair’s motion because v affects only the 
small-scale components of the turbulence. When the particles are close together 
however, u(xl ,  t )  x u(x,, t )  and so molecular diffusion can have a significant effect on 
the particle separation; indeed if the two particles are coincident they can only 
separate by molecular processes. Also v influences the small-scale components of the 
turbulence strongly and so will affect the motion of the particle pair when the 
separation is sufficiently small. 

How small must the separation be for the effect of K or v to be significant? Let d 
be the maximum particle separation for which K or v has a significant effect on the 
motion of the pair of particles. Since we are assuming Re and Pe to be large, d will 
be much smaller than the outer length-scales of the turbulence. Hence, from 
Kolmogorov’s theory of the universal equilibrium of the small-scale components of 
high-Reynolds-number turbulence (Monin & Yaglom 1975, chapter 8), d can depend 
only on K ,  v, and the ensemble average dissipation rate e. Dimensional analysis then 
yields d =f,(Sc) (v3/e)f where fl is a function of the Schmidt number Sc = V / K .  If the 
particle separation is less than d ,  then the typical time taken for the particle 
separation to reach d will also depend only on K ,  v and E ,  and will be of order 
t ,  = f,(Sc) ( v / e ) i  where f 2  is another function of Sc. Once the particles have separated 
to a distance d any further separation is caused only by the turbulence occurring in 

t ‘Coincident ’ here and below means, of course, that  the particle separation is small compared 
to  all macroscopic scales and that  both particles come from the same fluid element. It does not 
mean that  the two particles are actually the same particle ! 
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the inertial subrange and on larger scales; molecular diffusion no longer plays a 
significant role in the separation process. 

For sufficiently large Re and fixed Sc, d and td can be made arbitrarily small 
compared with the outer lengthscales and timescales of the turbulence. It seems 
reasonable to expect that the precise manner in which the particle separation 
changes from zero to d (or vice versa) will not be important in calculating 
(c(xl, t)c(xz,t));  provided particles in the model are provided with the means to 
change their separation from zero to d in a time which is not greatly in excess oft,, 
satisfactory results should be achieved. Following Durbin (1980), this can be 
achieved by ensuring that coincident particles can separate and by assuming that the 
inertial subrange of the turbulence in the model extends to arbitrarily large 
wavenumbers, so that if the separation of two particles is positive (no matter how 
small) they can be separated by the inertial subrange turbulence. The time required 
for inertial subrange turbulence to separate two particles to a distance d is, on 
dimensional grounds, of order ( d 2 / e ) i  which is, for fixed Sc, of order td. In a sense this 
procedure can be regarded as modelling not the real flow, but the flow which would 
occur in the limit R e  --f GO with Sc and the outer lengthscales and timescales fixed. We 
will call this the high-Reynolds-number limit. The above procedure can also be 
justified by using the theory of the small-scale structure of scalar fields. The theory 
predicts that, for fixed values of Sc and the outer lengthscales and timescales and for 
sufficiently high Re, the value of (c(xl,t)c(x2,t)) is insensitive to the Reynolds 
number (Batchelor 1959; Batchelor, Howells & Townsend 1959; Monin & Yaglom 
1975, chapter 8 ;  Durbin, personal communication). It follows that the form of 
(c(x,, t )  c(x,, t ) )  will converge to a limit as Re + GO and, if the true Reynolds number 
is sufficiently high, the infinite-Reynolds-number form will be a good approximation 
to reality. 

It should be pointed out that these arguments break down when considering 
measurements of (c(x,, t ) c ( x , ,  t)) at points close to small sources (i.e. points where 
the travel time from a source whose size is of order d or less is of order td or less). The 
precise value of K is clearly important in such cases. 

The above argument can hardly be called rigorous, but is very suggestive. Some 
support for the conclusion has been obtained from the two-particle model of Sawford 
& Hunt (1986) which includes diffusive and viscous effects explicitly. This model also 
gives an indication of how large R e  must be (for a given Sc) for the high-Reynolds- 
number limit to be a good approximation. (Sawford & Hunt’s model is based on that 
of Durbin (1980) which, as will be seen below, is not completely satisfactory. It would 
be of interest to repeat their work with a model based on that described in $4.1 
below.) 

4. A two-particle model, applicable in the high-Reynolds-number limit 
In this section recent advances in the theory of one-particle models (Van Dop 

et al. 1985 ; Thomson 1987) are used to derive a model for the motion of particle pairs. 
For simplicity we consider only isotropic constant-density flows and always refer to 
a reference frame moving with the mean velocity. The Reynolds number is assumed 
to be large. This means, as indicated in the discussion in $ 3  above, that molecular 
diffusion can be neglected except when the two particles are coincident, and the 
inertial subrange of the turbulence can be assumed to extend to arbitrarily large 
wavenumbers. Except when the particles are coincident, the particles can be assumed 
to move a t  the local fluid velocity, i.e. as if they are fluid elements. 
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Let X ( t )  = (x l ( t ) , x2 ( t ) )  and U(t) = (u l ( t ) ,u2( t ) )  be the position and velocity of the 
particle pair in X-space. For convenience the same symbol U is used for the particle- 
pair velocity U(t) and the flow field U(X, t )  ; it should be clear from the context which 
is meant. Sometimes it is convenient, following Durbin (1980), to use an alternative 
coordinate system in which the components of Xare related to the components of the 
separation vector xl-x2 and the centroid x,+x2. If we define Ax = (x,-x,)/2/2, 
Cx = (x1+x2)/l /2,  Au = (ul-up)/2/2 and Xu = ( u l + u , ) / l / 2 ,  then, in the new 
rotated coordinate system, X = (Ax, Zx) and U = (Au,Zu). In  the sequel, Ax will 
often, for simplicity, be referred to as ' the particle separation ', ignoring the factor 
1 / 4 2 .  Superscripts will denote Cartesian components and the summation convection 
will be used. The superscripts will run from 1 to 3 or from 1 to 6 depending on 
whether they refer to a three-dimensional quantity (such as x, or Au) or a six- 
dimensional one (such as X).  g(X, U , t )  will denote the density function of the 
distribution of contaminant particle pairs in ( X ,  U)-space a t  time t and ga(X, U, t )  will 
denote the corresponding density function for all pairs of fluid elements. Since the 
fluid has constant density, s g ,  d U is independent of X and g,(X, U ,  t )  is proportional 
to the p.d.f. of the velocity U ( X ,  t ) ,  i.e. g ,  contains the same information as the two- 
point velocity statistics. 

( X ,  U) is assumed to be a Markov process, i.e. given the values of X and U at  time 
t ,  the values a t  times greater than t are independent, of the values a t  times less than 
t .  Although this may not bc exactly true it is a reasonable assumption to make. This 
is because, in high-Reynolds-number turbulence, the acceleration of a fluid element 
has a significant autocorrrelation only over very short time intervals of the order of 
the Kolmogorov timescale 71 = ( v / e ) i  (Monin & Yaglom 1975, $21.5) and, in the high- 
Re limit (discussed in $3), 7,+00. Hence the changes in U(t) over successive time 
intervals At are only weakly correlated. Of course they cannot he completely 
independent or the variance of U would grow indefinitely. In  making the Markovian 
assumption it is assumed that this dependence can be accounted for by allowing the 
velocity increments to depend on the particle pair's velocity and position. Given 
some regularity assumptions on the Markov process it follows that ( X ,  U) satisfies a 
pair of stochastic differential equations of the form 

dX= Udt, (12a) 

dUi = ai(X, U, t )  dt+bii(X, U, t )  dt', (12b) 

where, as in ( Z ) ,  the components of d< are the increments of independent Wiener 
processes (see e.g. Schuss 1980). Ba' will be used to denote ibikbjk. Although B does 
not determine b, it  does determine the distribution of the random increments biid['; 
hence the specification of a and B is sufficient to determine the way the particle 
pairs move. It follows from (12) that g evolves according to the Fokker-Planck 
equation, 

4.1. The choice of a wnd B 
As indicated above, a and B will be selected by applying the theoretical ideas 
developed previously for one-particle models (Van Dop et al. 1985; Thomson 1987). 
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I n  order to apply these ideas we need to assume a form for the density function g,. 
For simplicity g, is assumed to be Gaussian with 

(here ul ,  Au etc. indicate the components of the field U(X,t), not the velocity U(t)  
of a particle pair). R is the two-point velocity correlation tensor. Because of 
incompressibility, i?Rij/aAx' = 0 (Batchelor 1953, p. 27) and, since R is isotropic, it 
can be written in the form 

Ri' = F ( A )  AxiAxj+G(A) Si', 

where d = [Ax[ and F and G satisfy @ + A  aF/aA + ( l / A )  aG/aA = 0. Following 
Durbin (1980) we take the longitudinal correlation function, f = FA2 + G, to be 

f =  1 - ( 4 2 / ( 4 2 + 1 2 ) ) k  (16) 

This form is qualitatively reasonable and gives the correct inertial subrange form a t  
small A .  The integral scale L off, j f ( A )  d(A 4 2 ) ,  is equal to 1.06 1. In the inertial 
subrange f = l-C(eA 4 2 ) i / ( 2 c 2 )  (Monin & Yaglom 1975, p. 353) where C is the 
Kolmogorov constant which is taken here to be 2.0 (Monin & Yaglom 1975, p. 485). 
Hence, in terms of u2 and E ,  1 = u 3 / ( e 4 2 ) .  This is consistent with the longitudinal 
integral scale being of order 0.8u3/e (Townsend 1976, p. 61). F and G can be 
calculated from f. The six-dimensional covariance tensor ( V U j )  will be denoted by 
Pi. The various components of V are given, in the ( x l ,  x , )  coordinate system, by (14) 
and, in the rotated (Ax,Xx)  coordinate system, by (15). I n  reality g, is not Gaussian, 
especially when A is small (Batchelor 1953, pp. 170-173), and it is hard to assess the 
error incurred by assuming that it is. This deserves further investigation. Of course 
the model does not assume that the velocity and concentration fields are jointly 
Gaussian and allows the mixed velocity-concentration two-point third-order 
moments to be non-zero. This is essential in any model of ( c 2 )  since 

(C(X1) c(x,)  = ( C ( X )  urn> 
represents the flux of pairs of contaminant particles in X-space. 

In  reality, if the tracer is well mixed in the fluid a t  some time, then it will also be 
well mixed at  all subsequent times. Hence, in a realistic model, if g is proportional 
to g, a t  some time, it should remain so (the 'well-mixed condition'). This implies that 
ga should satisfy (13) and this in turn leads to constraints on a and B. The theory 
presented by Thomson (1987) for one-particle models extends easily to two-particle 
models and shows that a two-particle model will be consistent with many aspects of 
the dispersion physics provided that i t  satisfies the well-mixed condition. l n  
particular, this condition ensures that the small-time behaviour of g for dispersion 
from an instantaneous source is correct, that the relation (8) between the forward 
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and reverse formulations is satisfied whenever t, = t, and s1 = s,, and that the model 
is equivalent to a two-point closure assumption on terms of the form 

(c(xI) c(x,) ui (x l )  ... um(xl)  un(xZ)  ... u4(xz) (Du(x,)/Dt)): 

where Du/Dt = au/at + u.Vu. Because the assumed form of g, is consistent (and 
indeed only consistent) with an ensemble of flows in which the fluid density is 
constant, the well-mixed condition also ensures that the model is consistent with a 
number of consequences of the constant density constraint. For example it satisfies 
p,(x,,x,,t,tly,,y,,s,s) = p2(~1,~2,~,~1~1,~z,t,t), a consequence of (8) for constant 
densit,y flows. This does not, of course, imply that the model is necessarily completely 
consistent with the constant density constraint in the strong sense discussed by 
Thomson (1987, $3.6). 

In order to satisfy the well-mixed condition it is necessary and sufficient for a to 
satisfy 

and + + O  a s I q - t c o  

(Thomson 1987). For our value of ga, 

is perhaps the simplest choice of 4 satisfying (17b) and (17c) (Thomson 1987). In  our 
situation the term @Vi1/aX1 is in fact zero because of the constant density constraint 
on R.  

B remains to be chosen. In one-particle models the choice of B is well understood 
(Obukhov 1959; Xovikov 1963; Monin & Yaglom 1975, p. 547, pp. 571-573; Van 
Dop et aZ. 1985; Haworth & Pope 1986; Pope 1987; Thomson 1987). In choosing B 
for our two-particle model we will be guided by the one-particle case and also by 
ideas about the motion of particle pairs discussed by Novikov (1963) and Monin & 
Yaglom (1975, p. 573). In high Re flows the acceleration correlation function is short- 
ranged in space as well as time (Monin & Yaglom 1975, $21.5) and so the acceleration 
of any particle is only weakly correlated with that of any other. However the 
accelerations cannot be completely independent or, a t  large times, all the particles 
would be moving independently. In  (12), the acceleration of the first particle in a pair 
of particles consists of two parts, ai and bij dti/dt, i = 1,2,3.  It seems reasonable to 
suppose that the part of the acceleration which is uncorrelated from one moment to 
the next, namely bzi dF/dt, is also uncorrelated with the position, velocity or 
acceleration of the other particle. Also, for simplicity and consistency with inertial 
subrange theory, we would like B to be independent of U (see Thomson (1987, $4) 
for a discussion of the analogous one-particle case). Together with the assumed 
isotropy of the turbulence, this leads to the choice Bii = B#. Because B repre- 
sents the high-frequency part of the acceleration, it should depend only on e, i.e. 
B = tC, e for some C,. For short time intervals [s, t ] ,  (12) then implies that the one- 
particle Lagrangian structure function 

D“ = ( u ; ( t ) - U ; ( S ) )  (u3(t)-ul(s)) 

takes the form C0s8”(t-s), the overbar indicating an average over all particles with 
a given position at time s (or, equivalently, over all particle pairs with a given x l ( s ) ) .  
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Hence C, can be identified with the universal constant occurring in the inertial 
subrange part of D.  There is great uncertainty in the value of C, but the data of 
Hanna (1981) support a value of 4.0 2.0 (C, is Hanna's 2n2B). In this paper C, will 
be taken to be 4.0. In  the following B will often be written as cr*/r. It will be shown 
below that r can be interpreted as a Lagrangian timescale. Because B remains 
constant as A --f 0 the model allows particles to separate and no special measures are 
needed to ensure this. With the above value of B and with 4 given by (18), (17a) 
becomes 

a2 a v6~ 

at a x k  

= - - ( " - l ) ~ ~ ~ ~ + ~ ( " - l ) ~ ~ ~ ~ ~ + ~ ( " - l ) z ~ - ~ ~ ~ ~ .  
2 

7 

To complete the specification of the model, we note that the initial value of U for a 
particle pair commencing a t  ( y , , y , )  a t  time s is chosen a t  random from the two- 
point velocity distribution at  (yl,y2). 

When the particles are far apart, the particles move independently and the motion 
of a single particle obeys the stochastic differential equations 

dx, = u,dt, I 
du, = ( -++$g)u,dt+a(:Yd<.] 

This is an appropriate model for the motion of a single particle in isotropic Gaussian 
turbulence and satisfies a one-particle version of the well-mixed condition (Thomson 
1987). Equation (19) can be expressed more simply as 

dx, = a1, dt, 1 
d1, = - (1,/r)  dt+ (2/7)+d5, J 

where 1, = uJcr. In  stationary situations this is simply a three-dimensional version 
of the Langevin equation and so u";t)ui(s) = a26ijexp ( - ( t - s ) / ~ ) .  Hence r is the 
Lagrangian integral timescale of the model. C, = 4.0 implies ra/L = 0.67 which is 
within the scatter of observed values (Pasquill & Smith 1983, $2.7). In non- 
stationary conditions r is not the integral timescale, but is simply a measure of the 
timescale on which particle velocities become decorrelated. 

The above model has been designed to be consistent with ga and can claim to be 
more faithful in this respect than previous models. However, it is not completely 
satisfactory as it ignores one aspect of the field U(X,t) which is not reflected in g,, 
namely the fact that u, does not depend on x2 and u, does not depend on x,.  Consider 
for the moment a single realization of the flow and consider the trajectory X(t) = 
(xl(t), x2(t)) of the pair of fluid elements for which, at time s, the first element is at 
y1 and the second a t  y , .  From this trajectory X(t) = (x , ( t ) ,x , ( t ) )  we can obtain a 
single particle trajectory x l ( t )  in x-space. This trajectory satisfies dx,/dt = u,(X, t )  
and xl(s) = y, .  Because of the property of U described above, u, depends only on x1 
and t and hence the single particle trajectory obtained would be the same, no matter 
what value y z  takes. If we now consider the ensemble of such particle and particle- 
pair trajectories occurring in the ensemble of flows (one particle or particle-pair 
trajectory for each member of the ensemble) it is clear that, 

For fixed y , ,  the ensemble of trajectories xl(t) is the same for all choices of y ,  (21) 

(this is a strengthened version of (1  1 ) ) .  The trajectories of the particle pairs from the 
above model do not satisfy this. For example, consider the evolution of ul(t) ui(t) and 

5 FLM 210 
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ui(t) ui(t) for particle pairs with position (y,, y , )  in X-space a t  time s. If ly, -y21 9 I ,  
thc particles move according to (19) and it  follows that 

(22)  

____ 

____ 
u$) u"lt) = ui(t) u$(t) = 3r2 .  

If the model is to satisfy (21), then (22) must be true for all initial separations and 
hence Ui(t) U Z ( t )  = 6g2 for all initial separations. However, using either the 
Pokker-Planck equation (13) or It6's formula (see e.g. Schuss 1980), the above 
model yields 

Ui(t)  U2( t )  = 6cr2-a4(Pd2(2d dF/dd +5~))d=,y,-y,l , \ /2(t-~)2 + O ( ( ~ - S ) ~ ) ,  (23) 

showing that the model trajectories do indeed violate (21) (it is easy to see that 
Fd2(2d dF/dd + 5 F )  cannot be identically zero). 

It is of interest to ask if the model can be modified to satisfy (21) and the well- 
mixed condition by choosing a different form for # (the physical reasoning leading to 
the choice of B given above is strong and so we do not wish to alter the form of B).  
Although it may be possible to choose 4 so that Ui(t)  Ui(t)  is correct to order ( t - s ) ' ;  
the author thinks it is unlikely that # can be chosen so that Ui(t)  U'(t) is correct to 
all orders, and hence even less likely that # can be chosen so that (21) is satisfied. The 
author has however been unable to prove the impossibility of satisfying both (21) and 
the well-mixed condition. 

Although the fact that the model violates (21) is a little unsatisfactory, the results 
of a number of numerical simulations, presented below, suggest that8 this is not too 
serious in practice. 

In the calculations of mean and mean square concentration presented in $6  below, 
it is convenient to follow the particles backwards and to use (9) to calculate (c2) at  
a point (the point from which the trajectories start). When the trajectories are 
evaluated in the forward direction, only the mean square of c averaged over somc 
finite sample volume can be obtained since a large number of pair trajectories need 
to pass through the receptor to reduce statistical error. For the isotropic Gaussian 
turbulence considered in this paper the calculation of the reverse trajectories is 
straightforward. Let (X'(t) ,  V(t))  denote the ensemble of forward trajectories 
starting a t  ( Y ,  - Y )  at time - s  calculated from the model with ~ ( t ) ,  Z(t), ~ ( t )  and ~ ( t )  
replaced by r( - t ) ,  l ( - t ) ,  e ( - t )  and ~ ( - t )  respectively. The thcory presented by 
Thornson (1987) implies that the ensemble of trajectories ( X ( t ) ,  U( t ) )  = ( X ( - t ) ,  
- V( - t ) )  is the required ensemble of backwards trajectories starting a t  ( Y ,  V )  a t  
time s. 

4.2. Comparison with other models 

It is appropriate to compare the above choice of a and 5 with the values adopted in 
other models. Perhaps the simplest two-particle model of the form (12) is the 
following. For a pair of particles originating at  position (yl, yz )  in X-space a t  time s, 
choose the initial velocities to be correlated, with = a2Ri j ( ( y l - y2 ) / z /2 ) .  To be 
consistent with our assumptions about g,, we choose u, and u2 to be jointly Gaussian. 
Subsequently each particle moves independently according to (19). We will call this 
the NGLS model since it owes much to the ideas of Novikov (1963), Gifford (1982) 
and Lee & Stone (1983) (see also Lin & Reid 1963), although it is not identical to 
the models proposed by these authors. For example, Novikov (1963) only makes 
assumptions about the second moments of quantities while Gifford (1982) and Lee & 
Stone (1983) only consider the component of the motion in one direction, restrict 
consideration to stationary conditions and do not make any specific assumption 



A stochastic model for  the motion of particle pairs 125 

about the form of the initial velocity distribution. In  addition the models of Gifford 
(1982) and Lee & Stone (1983) were intended to be used for following clusters of 
particles rather than just two particles, but can of course be applied to the problem 
of the dispersion of particle pairs. We will adopt the NGLS model as a representative 
example of the class of models which yield a Gaussian p.d.f. for the separation of a 
pair of particles which are initially coincident (i.e. the models of Lamb 1981 ; Sawford 
1982; Gifford 1982; Lee & Stone 1983). 

The NGLS model has the advantage of satisfying (21); indeed, together with a 
number of variants, it is the only model of the form (12) proposed to date which 
satisfies (21). However, it does not satisfy the well-mixed condition, a t  least not with 
any physically reasonable form for 9,; if the two particles approach closely a t  some 
time after release, the model will not ensure that they have similar velocities. Of 
course the NGLS equations for the evolution of the particle-pair trajectories are 
consistent with the form ga cc vP6exp ( -  UiUi/2a2), but this form is unrealistic in 
that it implies zero correlation between velocities at neighbouring points. Also the 
initial velocity distribution of the particle pairs is not consistent with this form. 

A two-particle model which has been widely applied is the one-dimensional model 
of Durbin (1980). The extension of this model to non-stationary conditions (suggested 
by Durbin and reported in Stapountzis et al. (1986)) takes the form 

i dAx = Ail V( 1 - f  ); dt, 
dCx = X i i  a( 1 +f)idt, 

dAG = -   ail/^) dt + (2/7)i d&', 
dCS = - ( X i l / ~ )  dt+ (2 /~)4dg,  

where A 4  = Au/(a(l - j ) i ) ,  CS = Xu/(v(l +f)i)),  &' and g are independent Wiener 
processes and the correlation function f has the form (16). In  the same way as (19) 
was expressed in the form (20), it  is straightforward to express Durbin's model in the 
form (12) although the equations then appear more complex. The initial values of 
AS and Cil are chosen to be independent and Gaussian with variance 1.  Because this 
model is one-dimensional, it is appropriate to comment on the physical interpretation 
of Ax and C x .  In  most of the applications of the model that have been made to date 
(Durbin 1980; Sawford 1983, 1985; Sawford & Hunt 1986), the values of Ax and Ex 
are interpreted as the values of one component (say the x-component) of Ax and Xx, 
and attention is restricted to source distributions which are homogeneous in the y- 
and z-directions. Equation (24) is then used as a model for the backwards trajectories 
(with t in (24) interpreted as running in the opposite direction to real time) and the 
second moments of c are calculated from the statistics of such trajectories using a 
one-dimensional version of (9) : 

~ , ~ Y l ~ Y , ~ ~ l ~ s 2 I ~ l ~ ~ 2 ~ ~ ~ ~ ~ ~ 2 ~ Y l , Y 2 ~ ~ l ~ s 2 ~ ~ Y l ~ ~ l ~ Y , ~ ~ 2 .  
s,<t ,  s,<t 

(25) 

This equation can be derived from (9) if the trajectories defined by (24) are 
interpreted as trajectories for particle pairs whose initial separations in the y- and z- 
directions are zero and (c(xl,t)c(x2,t)) is interpreted as the covariance of the 
concentrations a t  two points which have the same y and x coordinates. 

Like the NGLS model, Durbin's model does not satisfy the well-mixed condition 

s (C(X1, t )  4x2, t )>  = 

5-2 
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with a physically reasonable form of ga. As in the NGLS model, there is a form of ga 
which is consistent with Durbin’s model, namely 

but this form implies infinite ( p 2 ) .  Related to this fact is the fact that, if (c2) is 
calculated using forward trajectories and a one-dimensional version of (6), then, for 
a contaminant that is initially uniform in space (in every realization), the model 
predicts that (2) will be infinite a t  all times after release (Sawford 1983; Egbert & 
Baker 1984). This problem is avoided by using the backwards relation (25) which 
automatically ensures that fluctuations will not appear if the initial conditions are 
well-mixed. Of course (25) was derived from (9) which was in turn derived on the 
assumption that p is constant, and so, because the model’s well-mixed state is not 
consistent with a constant p, there is an inconsistency between (24) and (25). Like the 
new model proposed above, Durbin’s model fails to satisfy (21). To see this note that 
particle pairs released a t  (y,, y z )  have an initial mean relative acceleration unless 
lyl-y21 9 1 (Thomson 1986b). 

5. Properties of Pz 
We can learn something about the new model described in $4.1 by looking a t  somc 

of the properties of P2 as predicted by the model. One of the most important 
quantities that can be calculated from P2 is the distribution of the particle separation 
Ax. p,(Ax, t 1 s) will be used to denote the p.d.f. of Ax a t  time t for particle pairs with 
zero separation a t  time s, i.e. 

PA(Ax, t 1 S) = p p ( ( h + A ~ ) / 1 / 2 ,  ( h - A ~ ) / 1 / 2 ,  t ,  t l O , O ,  S, S) d k .  i 
Because we are considering isotropic turbulence, this p.d.f. is a function of A = IAxl 
only and so is sometimes written as pA(A, t 1 s )  or, if it is clear what values t and s take, 
as p , ( A ) .  However this is not the p.d.f. of A which is equal to 47cA2pA(A). The reason 
why p ,  is an important quantity is that it has a strong effect on the mean square 
concentration, with strongly peaked shapes leading to larger values of the mean 
jquare concentration (Sawford 1983). In  the same way p,(Cx, t 1 s) will denote the 
p.d.f. of Ex a t  time t for particle pairs with both particles coincident a t  the origin 
at  time s. This is a function of Z = lCxl only and so will sometimes be written as 
px(Z, t Is). I n  addition, for particle pairs with both particles a t  the origin at  time s, 
the distributions of x,, Ax and Cx are spherically symmetric. For this case c , ( t J s ) ,  
a,(tls) and ax(t(s) will be used to denote the root-mean-square value of one 
component of x,, A x  and Xx respectively a t  time t. For one-dimensional models such 
as Durbin’s (1980), the above definitions do not apply directly. We note here that, 
in such models, p,, px, a, and a, will be used to denote the p.d.f.s and mean-square 
values of Ax and Ex for particle pairs which are coincident a t  the origin a t  time s. 

In the following we will investigate the properties of Pz from the new model for 
both stationary and decaying turbulence. These properties will be compared with the 
properties of some of the other models described in $4.2. 

5.1. Stationary turbulence 
Let us first consider the idealized case where the turbulence is stationary. Only 
forward trajectory statistics will be described here ; because the flow is stationary, 
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FIQURE 1 (a,b). For caption see page 129. 

the discussion at the end of $4.1 implies that these statistics can also be interpreted 
as the statistics of backward trajectories. Figure l ( a )  shows the p.d.f. of the 
distribution of Ax in the new model a t  time t for zero separation at time s. 
Unfortunately, p ,  cannot be calculated analytically and so numerical results are 
shown. The details of the numerical calculations are given in Appendix A. In fact, in 
the numerical simulations it is impossible to start with particles which are truly 
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FIGURE 1 (c,d). For caption see facing page. 

3 

coincident, and so a small initial separation equal to 2 x 10PZ was used. The results 
are insensitive to changes in this quantity of an order of magnitude. This is discussed 
further in Appendix A. The curves shown consist of straight lines between a number 
of data points, each data point representing the average value of p ,  over a small 
interval of A values. It can be seen that the distribution changes from a strongly 
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FIGURE 1 .  The shape of pa(A,t Is)  in stationary turbulence. The curves are normalized with zeroth 
and second moments equal to unity as if they were one-dimensional p.d.f.s (a)-(e) show the results 
for the new model: (a)  shows the results obtained without ‘particle splitting’, ( b )  shows results 
obtained using the particle-splitting technique, ( c )  shows 5esults obtained using the particle- 
splitting technique plotted against AS to show the a-pAE behaviour near A = 0, ( d )  shows 
p , ( d ,  t 1 s) and ( e )  shows %(A,  t 1 s). (f) shows p ,  from Durbin’s (1980) model. The numbers attached 
to the curves indicate values of t - s  normalized by g 2 / e ,  and the unlabelled line is a Gaussian 
distribution. 
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peaked distribution to a Gaussian distribution as t increases. This was also observed 
by Thomson (1986b) using what is essentially a one-dimensional version of the 
model. At small times, t -s < 7, the shape is independent oft. This is to be expected 
on dimensional grounds because, from inertial subrange theory, p ,  should depend 
only on A ,  t - s  and 8. 

One of the problems of having to calculate p ,  numerically is that it is very difficult 
to obtain an accurate value for p,(O). This is because very few particle pairs pass 
sufficiently close to A = 0 and so the results show a great deal of statistical scatter. 
In order to obtain a better estimate of p ,  near the origin, the following 'particle 
splitting' technique was applied. Each particle pair is assigned a weight which 
indicates the importance to be attached to the pair in calculating the statistics. 
Whenever, for any integer n in the range 0 to 18, the separation of the particles 
becomes less than A ,  = CT,~"~' x lo-', having been greater than A ,  in the previous 
timestep, the particle pair is divided into two copies which then move independently, 
each pair being given a weight equal to half the weight assigned to the parent particle 
pair. Similarly, whenever the separation of the particles becomes greater than A ,  
(having been less than A ,  in the previous step) the pair has a probability o f t  of being 
annihilated. If the particle pair survives, the weighting assigned to i t  is doubled. This 
method ensures that there are a lot of particle pairs with small separations, each 
having a very small weight. A proof showing that this does not introduce a bias into 
the results but merely alters the accuracy is given in Thomson (1988). The value of 
gA which was used in defining A ,  was obtained from the calculations made without 
the particle-splitting technique. The result is shown in figure l ( 6 ) .  Because of the 
increased accuracy a t  small separations, it is possible to place the data points from 
which the curves are constructed closer together. In  order to  resolve the behaviour 
near A = 0, the data points have been placed as close together as is possible without 
the scatter becoming unacceptable. More accurate results could be obtained by 
following a greater number of particles ; however, as with all Monte Carlo methods, 
the convergence is slow, the error decreasing as N-i where N is the number of particle 
pairs. 

It is clear from (6) that p,(Ax,  t I s )  is equal to the value of (c(x, t )  c ( x + A x  1 / 2 ,  t ) )  
resulting from an initially isotropic concentration field with 

(c(x, S) C(X+ AX 4 2 , ~ ) )  = &(AX) 

where S is the Dirac delta function. Now, for A lying in the inertial subrange, 
classical theory (e.g. Monin & Yaglom 1975, p. 384) predicts that the concentration 
covariance function ( ~ ( x ,  t )  c(x  + A x  4 2 ,  t ) )  has the form CL -PA; .  Hence p ,  should 
also have this form for small A .  The model results for small t - s do indeed agree with 
this, as is shown by the straight-line behaviour near the origin in figure 1 (c). At larger 
t - s  (not shown in figure l c )  the inertial subrange behaviour ceases to be apparent 
in the graph of pa; this is to be expected because the region in which the inertial 
subrange form should occur ( A  4 I )  becomes small relative to the lengthscale CT, on 
which p ,  varies. 

Figures 1 ( d )  and 1 ( e )  show the p.d.f.s of (Ax)", Ax3) and of Ax'. These are functions 
of ((Ax')'+ (Ax'))"): and 1Ax31 respectively, and will be written as pA(d) and S A ( A )  
where A is to  be interpreted, with a slight abuse of notation, as ( (hx') '+(A~'))")~ or 
IAx'I. They are closer to a Gaussian distribution than p,, the peak in p ,  at small 
separations being smoothed by the process of integrating p ,  over Ax' or over Ax' and 
Ax2. (The use of superscripts for Cartesian components becomes a bit clumsy here, 
but appears unavoidable - subscripts are already used for distinguishing between 
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particles 1 and 2 and the use of y and x for x2 and x3 is liable to be confused with the 
use of x and y to  denote two points in space.) 

In  both Durbin’s (1980) model and the NGLS model, p, can be calculated 
analytically. I n  Durbin’s model, p ,  is always strongly peaked and infinite a t  A = 0 
as shown in figure 1 (f ). In  the NGLS model p ,  is exactly Gaussian a t  all times. The 
similarity in the shape of p, at times t - s  < 7 in the new model and the model of 
Durbin is striking. However, the difference in behaviour near the origin has some 
important consequences. Firstly the new model can treat the problem of a point source 
and does not require the explicit treatment of molecular diffusion which is needed to 
smooth the singularity in Durbin’s model (Sawford & Hunt 1986). Also, because of 
the shapes of p, and p, (see below for discussion of px) and the fact that g, and g, 
tend to  infinity as t - s +  co, it follows that, for any given lengthscale, the values of 
p ,  and p ,  from the new model will show little variation on this scale when t - s  is 
sufficiently large. It seems reasonable to suppose the same is also true of the quantity 
p, (x , ,  x,, t ,  t ly,y, s, s), and hence (using the above-noted fact that the model statistics 
for forward and backward trajectories are equal in stationary conditions) of the 
quantity p2(yl,y2, s, s I x, x, t ,  t ) .  Now, for an instantaneous spatially-bounded 
deterministic source, (9) can be written as 

where s is the time a t  which the contaminant is released (S here has a slightly 
different meaning to the S introduced in $2 ,  being the amount of tracer released per 
unit volume, not per unit space-time volume). It follows from the above property of 
the quantity p,(y,, yz, s, s I x, x, t, t )  that this can be approximated when t --s is large 

< c ( x > t ) z )  = Pz(Y,Y,s>slx>x>t>t) S(Y,)~(Y,)dYldY,> 5 by 

where y is some point in the source region. Hence, provided the total amount of 
material released remains fixed, ( c 2 )  becomes independent of source size in the new 
model. Similar arguments, using ji, or p, instead of p,, show that (2) becomes 
independent of source ‘size ’ (i.e. source thickness) for instantaneous area and line 
sources also. In  contrast, the value of p,(y,, y,, s, s I x, x, t ,  t )  in Durbin’s model shows 
variations on a lengthscale 1 or less a t  all times owing to the singularity in p,. Hence, 
as discussed by Durbin (1980) and Sawford (1983), ( c 2 )  never becomes independent 
of the source size for sources of size less than 1. Although it  is not clear how to prove 
from first principles that this behaviour is wrong, it seems intuitively very unlikely. 

A partial justification of the idea that (c2) should become independent of source 
size is possible by considering the equality noted above between  AX, t I s) and the 
spatial covariance function of a hypothetical isotropic concentration field. We have 
already noted that this implies p ,  x a-pAg for A lying in the inertial subrange. Now 
a t  large times cri grows like t and so a cannot decrease faster than t-:. Now a is the 
variance of our hypothetical concentration field and p is proportional to its rate of 
dissipation (see e.g. Monin & Yaglom 1975, p. 384). Hence @/a must become small, 
since otherwise a would decrease exponentially. It follows that p, is likely to show 
little variation on small scales for large t-8. In addition i t  seems likely that p, will 
also show little variation on small scales a t  large t--s (see discussion of p ,  below). 
Hence, for the same reasons as given above in discussing the behaviour of (2)  in the 
model, it seems likely that the value of (2) for instantaneous plane, line or compact 
sources will become independent of source size a t  large times. 
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FIGURE 2. The shape of p,(C,tls) from the new model in stationary turbulence. The curves are 
normalized with zeroth and second moments equal t o  unity as if they were one-dimensional p.d.f.s 
The numbers attached t o  the curves indicate values of t - s  normalized by u2/e, and the unlabelled 
line is a Gaussian distribution. 

It should be pointed out that, in most of the applications of Durbin’s model made 
to date (Durbin 1980; Sawford 1983, 1985; Sawford & Hunt 1986), p ,  is, as noted in 
$4.2, interpreted as the p.d.f. of one component of Ax (this is the logical interpretation 
since the model is one-dimensional). Hence it should be compared with the value of 
gA from the new model (figure l e ) .  If this is done, the agreement in shape is much 
worse. It is not proposed here to investigate in detail how much of this difference is 
due to the one-dimensionality of Durbin’s model and how much is a result of the 
failure to satisfy the ‘well-mixed condition’. However, for t - s  < 7, the model of 
Thomson (1986 b )  (which is essentially a one-dimensional version of the model of $4.1 
and which satisfies the well-mixed condition) also shows a much stronger peak at  
A = 0 than does 3A from the new model, suggesting that, the one-dimensionality of 
Durbin’s model may be an important factor. 

Figure 2 shows the p.d.f. of the distribution of Zx. In the new model it is close to 
Gaussian at all times. As in figure 1 ,  the scatter at small C is statistical noise, The 
value of p z  in the NGLS model is, of course, exactly Gaussian a t  all times. In  
Durbin’s model (not shown) p ,  is also close to Gaussian (Sawford 1983). A Gaussian 
shape for p ,  is t o  be expected a t  small times (as a consequence of the assumed 
Gaussianity of the fixed-point velocity distribution) and at large times (on the basis 
of a central limit theorem type argument) and so the observed Gaussianity is not 
surprising. 

Figure 3 shows the growth of al, uA and a, in the new model and in the NGLS 
model. At small times a1 and a, are proportional to t - s  (as is to be expected since 
the particle trajectories can be approximated by straight lines over short times) while 
aA grows like (t-s); (as is expected on dimensional grounds - see e.g. Monin & 
Yaglom 1975, p. 545). At large t--s, al, u, and uz grow like (t-8s);. The ( t -s ) j  growth 
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FIQIJRE 3. u,(t I s), uA(t 1 s) and uz(t Is) in stationary turbulence. The values of olr uA and ux obtained 
from the new model are denoted by 0 ,  A and a, and the values obtained from the NGLS model 
are indicated by -. -, __ and -- -. 

of u1 is expected on the basis of Taylor's (1921) result. Also mA and ux are expected 
to grow in the same way as u1 a t  large t - s  since, a t  large t - s ,  the particle pairs will 
have spent most of their time at  large separations where they travel independently. 
The values of u, , uA and a, from the NGLS model can be obtained analytically and 
are as follows: 

a?(tls) = 2a2~z(exp(-(t-s)/7)-l+((t-s)/7), 

ai(t 1 s) = a: - u2r2( 1 - exp ( - ( t - s ) / 7 ) ) 2 ,  

ug(t I s) = ut + u2T2( 1 - exp ( - ( t  - ~ ) / 7 ) ) ~ .  

In the new model, the value of u1 is indistinguishable from that in the NGLS model. 
This is as it should be if (21) is not to be seriously violated. This is because, for large 
initial separation (with xl(s) = 0) ,  

-~ 
= (z:)~ = a 2 2 m 2  (xl) - 7 2 (exp(-(t-s)/7)-1+(t-s)/~) 

in the new model (this follows from (19)) and these quantities should be independent 
of initial separation since they depend on the motion of one particle only. The value 
of aA in the new model is smaller than the value from the NGLS model. This is to be 
expected because, if the particles in the new model approach closely at some time 
after release, their velocities become highly correlated again, reducing the rate of 

In order to see how seriously the new model violates (21), the mean and root-mean- 
square values of the various components of x1 were calculated for a range of initial 
separations. These quantities should be independent of A(s) if (21) is to be satisfied. 
It was found that this is indeed the case, with the root-mean-square values all lying 
within a few per cent of each other and the mean values all equalling zero to an 
accuracy of a few per cent of the root-mean-square value. In addition t?V was 
calculated for various initial separations. The values of VU' do not show any strong 
dependence on the initial separation and equal 6a2 to within a few per cent. This 
lends further support to the idea that the violation of (21) may not be too severe, and 

growth of uA. 

- 
- 
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FIGURE 4. ISxJ*, 16AxI2 and 16Zx12 from the new model for particle pairs released a t  time s in 
stationary turbulence. ~ 0 ,  A and denote 16x,1*, I ~ A X ~ ~  and 16Cx1* respectively for zero initial 
separation. denotes 16AxI2 for an initial separation of 2 x iO-3Z. The solid line is Coet3. 

suggests that either the higher-order terms in (23) have a corrective effect or the 
power series expansion ceases to be applicable after a short time. We also note that 
the distribution of x, in the model is Gaussian for large initial separations (this 
follows from (19)) and hence that it should be close to Gaussian for all initial 
separations if (21) is to be approximately true. The simulations indicate that this is 
in fact the case, with the p.d.f.s of x, for various initial separations and travel times 
(not shown) having a degree of scatter about a Gaussian distribution similar to that 
seen in figure 2. 

There is however one aspect of the new model which violates (21) significantly. 
Consider the quantity 6x,(t) = xl(t)-xx,(s)-ul(s) ( t -s) .  For t - s  < 7, ISX,)~ should 
grow like C, e(t - s ) ~ ,  the value which takes when A(s) %- I (this follows from (19)). 
As in (22), the average here is over - particle pairs with a given position in X-space a t  
time s. For A(s) = 0, the value of 16x1I2 from the model is significantly smaller than 
C , ~ ( t - s ) ~  (see figure 4). Some insight into why this is so can be obtained by 
- c o n s i d e a a d x  and E x ,  defined in a way analogous - to  ax,. It is easy to show that 
16~,1~+ ) 6 ~ , 1 ~  = I6AxI2 + 16C~1~ and so, by symmetry, 16xJ2 = +(ISAxl* + 16C~1~). Hence, 

~~ _ _ _ ~  

for t - s  < 7, 

should hold. In  the model the leading-order term in the Taylor series for (6AxI2 and 
is C , ~ ( t - s ) ~  and so (26) is satisfied a t  small times. If A(s) < 1, then, while 

A < 1 (i.e. for t - s  + 7), the stochastic differential equations for E x  and 
E u ( t )  = Cu(t) -Cu(s) can be approximated by 

d6Cx = 6Zu dt, d6Cu = (C, e); d<, 

with GCu(s) = 0 (the terms which have been omitted in this approximation have an 
effect which is only significant over timescales of order 7). Hence 16C~1~ = C,e(t-s)3 
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for t - s  < 7. However the equations for SAX and SAu = Au(t)-Au(s) are much more 
complex and, in addition to a (C,~)id< term, the expression for dSAu contains terms 
which, for particle separations lying in the inertial subrange, are of order (e2/A)tdt. 
Over a time of order ( A 2 / € ) ;  these terms have an effect comparable to the effect of the 
(C,,e)id< term. Hence (SAxI2 x C , ~ ( t - s ) ~  only holds for t - s  4 For 

@ t - s  6 7,  SAX^^ grows like ( t - ~ ) ~  but with a different coefficient. This 
difference in the coefficient of ( t -s)3 for t - s  4 (A(s)’//e); and for 

(A(s)”e); 4 t-s < 7 
is clearly seen in the results obtained with an initial separation of 2 x 10-31 (figure 4).  
For this value of the initial separation, the ‘cross-over’ time (A(s)’/e)$ equals 

Consider a pair of particles whose initial separation lies well within the inertial 
subrange and consider their motions over times for which the evolution of SX, and 
SAX is dominated by inertial subrange eddies. In  the model, for which the inertial 
subrange extends to arbitrarily high wavenumbers and frequencies, this means 
restricting attention to initial separations with A(5) 4 1 and travel times satisfying 
t - s < T. By assuming that the covariance between the accelerations of two particles 
whose separation lies in the inertial subrange is negligible, Monin & Yaglom (1975, 
pp. 546-547) and Sawford (1984) deduce that ~ S X , ( ~  = (SAxI2 for such initial 
separations and travel times. (Monin & Yaglom (1975) and Sawford (1984) were 
principally concerned with the case where the initial separation is zero or where the 
initial separation is non-zero and the travel time is sufficiently large for the particles 
to forget their initial separation. In  this case equals the mean square 
separation (AxI2. However their analysis applies more generally.) If this is true i t  
follows that the value of  SAX(^ in the model is incorrect for times in the range 
(A(S)~/E)S @ t - s  4 7. However the argument in Appendix B shows that the inertial 
subrange acceleration covariances may be important in r e a l i t i h e y  certainly are 
in the model since, as we have noted, the model value of I S x e  greater than 
)6Axl2 for (A(s)~/E)$ < t-s 4 7), and that it is more likely that 1 6 ~ ~ 1 ~  is, in reality, 
greater than 1SAxl2 for times in the range 4 t - s  @ 7. Hence the model value 
of ISAxI2 is not unreasonable and the cause of the problem could be the model’s value 
for m. 

It is not clear if the above problem is a serious flaw in the model. However it should 
be pointed out that this flaw is not one which is apparent in the single-time statistics 
of particle pairs whose trajectories commence a t  a given position in X-space. The 
single-time statistics, a t  least as judged by the evidence presented earlier in this 
section, show little evidence of violation of (21). For many purposes, in particular for 
predicting concentration fluctuations in the situations which will be considered in 5 6, 
it is only the single-time statistics which are important. This suggests that the 
violation of (21) may not matter in practice. 

10-2u2/e. 

- 

5.2.  Decaying turbulence 
A number of simulations were also carried out in decaying isotropic turbulence. The 
velocity field was assumed to decay self-similarly with u2 varying as ai(t/s)-” where 
us is the value of u at time s. The value of n was taken to  be 1.35, which is within 
the scatter of values observed in grid turbulence (Warhaft 1984; Warhaft & Lumley 
1978). Of course the decay exponent measured in grid turbulence is the exponent for 
the decay of with downwind distance in a steady inhomogeneous flow. However, 
it can be interpreted as the exponent for the decay in time of isotropic turbulence in 
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FIGURE 5.  The shape of p,(d,  t 15) from the new model in decaying turbulence. The curves were 
obtained using the particle-splitting technique and are normalized with zeroth and second 
moments equal to unity as if they were one-dimensional p.d.f.s (a) shows results for t > s (forward 
trajectories) and (b) shows results for t < s (backwards trajectories). The numbers attached to the 
curves indicate values of t / s  for the forward trajectories and s / t  for the backwards trajectories. In 
both figures the unlabelled line is a Gaussian distribution. 
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FIGURE 6. ?,(t 1 s), vA(l 1 s) and ~ ~ ( 1  1 s) in decaying turbulence. The values of vl, c,, and vx obtained 
from the new model are denoted by 0 ,  A and m, and the values obtained from the KGLS model 
are indicated by -.-, ~ and (a )  shows results for t  > s (forward trajectories) and (b )  shows 
results for 1 < s (backwards trajectories). 

the usual way (Monin & Yaglom 1975, pp. 115-1 16). With this form for B', e is equal 
to 1.5n(ai/s) (t /s)-("+'),  which, assuming the relation between t~', e and I given in $4.1, 
implies 1 = ( 4 2 / 3 n )  B, s(t/s)'-i". 

Trajectories of particle pairs were simulated both forward and backwards in time, 
the particles being coincident a t  the time of release. The same release time was used 
in all the simulations. Because the turbulence decays self-similarly, the results can be 
rescaled (Durbin 1982) to give results for other release times, for example 

p&,, x,, 4 t IO,O,s,  4 = yg-3npz(X, 7'-in, X,y'-;", yt,yt 10% 0, ys, ys) (27) 

for any y > 0. 
The shape of p ,  is shown in figure 5.  Because of the scaling relation (27),  the shape 
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of p ,  depends only on t /a .  The shape becomes quite close to Gaussian as t/s-tO; 
however there is some indication that the shape remains more peaked than a 
Gaussian distribution as t / s  + co. Figure 6 shows the values of ul, CT, and crz from the 
new model and from the NGLS model. As is to be expected, the behaviour of v1, cr, 
and rx for small Jt-s l  is the same as in the stationary case. For the forward 
trajectories, C T ~ ,  CT, and cz become, a t  large times, proportional to (t--8)'-in. This 
form of large-time behaviour is expected both on dimensional grounds and from 
consideration of a modified version of Taylor's (1921) result (see Batehelor & 
Townscnd (1956) and Monin & Yaglom (1971, $9.4) for a discussion of the case 
n = 1). The values from the NGLS model can be obtained analytically and are 

where r = a-++ 1, q = a+$- 1 for the forward trajectories ( t  > s) and 
r = -a-+fi+ 1, q = -a+in- 1 for the reverse trajectories ( t  < s), with c1 = &C,, 
(Anand & Pope 1985). As in the stationary case the value of r, in the new model is 
considerably smaller than the value from the NGLS model, while the values of r1 in 
the two models are indistinguishable. The close agreement between the values of r1 
lend support, as in the stationary case, to the idea that (21) is not seriously violated. 
The homogeneity of the flow and equation (7) imply that, in reality, g 1 ( t ( s )  = 
vl(sJt). This is satisfied exactly in the NGLS model and to high accuracy in the 
new model. It is of interest that the values of r1(tls)/~,(tls) and c r , ( t J s ) / o ; ( t l s )  
for the backward trajectories do not tend to unity as t / s  -+ 0 while the values for the 
forward trajectories do tend to unity as t / s+ co. A consequence of this is that 
uA(t 1 s) > CT,(S 1 t )  in the limit t / s+ CO, while, as a result of (8), p,(O, s I t )  = pA(O, t 1 s). 
It follows that the shape of p,(d, t 1 s) must be more peaked in the limit t / s  --f co than 
in the limit t / s  + 0, as is observed in figure 5 (note this argument does not apply to 
the NGLR model which does not satisfy (8) because of the inconsistency noted in 
$4.2 between the initial conditions on the particle velocities and the form of ga with 
which the model is consistent). It will be seen below that this has implications for 
the intensity of concentration fluctuations at  large times. 

6. Concentration variances from the model 
In this section values of concentration variance r: = (C ' ) - (C )~  from the new 

model are presented and some comparisons with experimental data are made. Only 
deterministic instantaneous sources are considered and the release time will be 
denoted by s. For t > s, the reverse dispersion relations given in $ 2  can then be 
written as 

(4x2 t)> = Pl(Y, s I x, t )  S(Y) dY 

(c(x,  t ) 2 )  = P,(Y,,Y,, 8, s I x, x, t ,  t )  S(Y,)fJ(Y,) dY1 dY2, 

(28) 

(29) 

s s and 

where X(x) is the source strength (as in $ 5 ,  S here has a slightly different meaning to 
the X introduced in $ 2 ,  being the amount of tracer released per unit volume, not per 
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unit space-time volume). It is useful to apply an approximation intoduced by 
Sawford (1983) and replace p ,  in (28) by 

where Ay = (y ,  - y 2 ) / 2 / 2 ,  Cy = (y l  +y2) /2 /2  and GA(x, v2) denotes a h-dimensional 
Gaussian distribution with variance cr2, i.e. 

1 
2 x 8  

G,(x, g2) = -exp ( -  ((x'), + ( x 3 ) 2 ) / 2 v 2 ) ,  

1 
G,(x, v2) = ___ exp ( -  ( ~ ~ ) ~ / / s a ~ ) ) .  

( 2 4  cr 

The assumptions involved here are that the distribution of x and Cx are 
approximately Gaussian (which is true) and that, for particle pairs with separation 
zero a t  time s, Ax and Cx are approximately independent. The latter assumption is 
hard to verify directly but appears reasonable because of the weak dependence of 
d h  on Ax, the absence of any dependence of dAx on Ex, and the fact that the 
covariance of Ax and Cx is zero. A comparison presented below between values of vc 
obtained with and without this approximation gives some indirect support for the 
assumption. The advantages of using the approximations (30) and (31) are that it 
reduces statistical noise and makes it easier to  see how the different aspects of p, and 
p ,  (e.g. v,, vA, gx, shape of pA) influence vc. 

Calculations of (c2) and (c) were carried out for area, line and compact sources 
centred on the origin. The source size will be denoted by go. The source is taken to  
be Gaussian, i.e. S(x) = GA(x ,  c r i )  where h is 1 for an area source, 2 for a line source 
and 3 for a compact source. As discussed by Bawford (1983), (c) and < c 2 )  arc, with 
the approximations (30) and (31), given by 

(c(x, t ) )  = QA(x, g;(s I t )  + 4) (32) 

(c(x, t ) ' )  = pA(Ay> I t )  GA(AY, g,2) dAyGA(x 2/29 4 8  I t )  + (33) s and 

Some calculations will also be presented for two parallel Gaussian areas sources. For 
this situation expressions analogous to (32) and (33) can be easily derived. 

6.1. Stationary turbulence 
Figures 7 ( a ) ,  7 (b)  and 7 (c )  show values of a,/(c) at x = 0 for area, line and compact 
sources of various sizes. Some statistical noise is evident a t  small values of gc/(c), 
especially a t  large times. This is because, when vc/(c) is small, small errors in (c2) 
and (c) can result in a large error in vc. The results show clearly the strong effect 
which source size has near the source and suggest that (T,/(c) becomes independent 
of source size and tends to zero at  large time. Because of statistical noise, i t  is 
impossible, in the absence of an analytic solution to  the model, to state with 
certainty that a,/(c) tends to  zero. However, ifpA(A, s I t )  is exactly Gaussian at  large 
t ,  then (32) and (33) imply 
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FIGURE 7 (a-c). For caption see facing page. 
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FIGURE 7 .  Values of uc/(e) at x = 0 from the model in stationary conditions. (a) shows results for 
an area source, ( b )  for a line source and (c) for a compact source. ( d )  shows results for an area source 
calculated without using the approximation (31). The different symbols refer to different source 
sizes: A, uo = 0.001u3/e; V, uo = 0.002u3/e; m, uo = 0.005u3/e; +, uo = 0.01u3/e; 0 ,  uo = 
0.02ua/e; A, u0 = 0.O5u3/e; V, u,, = O.laS/e; 0 ,  r0 = 0 .2u3 /e ;  0 ,  u0 = 0.5u3/&; 0, u0 = u3/e .  

a t  large times. Hence, because crl(s I t)/a,(s I t )  and rl(s I t) /crz(s 1 t )  tend to unity as 
t +  co, crc / (c )+O a t  large times. 

Values of c ~ J ( c )  for an area source, obtained without using the approximation 
(31) (but still using (30)) are shown in figure 7 ( d ) .  In  evaluating (29), p ,  was 
represented as a sum of a number of delta functions located a t  the positions of the 
particle pairs in the simulation. At small times the results show good agreement with 
the results obtained using (31) (figure 7a) ,  lending support to the assumption that Ax 
and Zx are approximately independent. At larger times however the scatter becomes 
very great due to the small number of particle pairs passing through the source. For 
example, for small sources a t  large times the expected number of particle pairs 
passing through the source can be less than one. In  this situation either no particle 
pairs pass through and the calculated value of (c2) is zero, or one or more particle 
pairs pass through and crc/(c) is large. It may be possible to improve matters by 
smoothing p ,  and by the use of a suitable form of particle splitting to ensure that 
there are always a lot of particle pairs near the source ; however this has not been 
attemped here. For line and compact sources (not shown) the scatter is even greater. 

Figure 8 shows a comparison between the model results and the experimental 
wind-tunnel data of Fackrell & Robins (1982). In the wind-tunnel experiments 
material was released into a turbulent boundary layer from a continuous compact 
elevated source. For comparison with the model, the experimental data obtained a t  
a distance x downwind of the source is regarded as data obtained a t  time x /U  after 
the release of an instantaneous line source in stationary isotropic turbulence (here U 
denotes the mean velocity at the source in the experiments). Provided the anisotropy 
of the flow can be neglected, this should be a good approximation ; this is because the 
intensity of turbulence in the experiments was small (see e.g. Townsend (1954), 
Anand & Pope (1985) or Sawford & Hunt (1986) for a discussion of a similar 
approximation - the approximation of a continuous line source by an instantaneous 
area source). The wind-tunnel results are of course affected by the shear and the 
inhomogeneity in the flow and the anisotropy of the (one-point) velocity covariance 
tensor; however the effect of the shear and inhomogeneity should be unimportant for 
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FIGURE 8. Comparison of v,/(c) a t  x = 0 from the model with the experimental data  of Fackrell 
& Robins (1982). Model results are indicated by solid symbols and experimental results by open 
symbols. The different symbol shapes refer to different source sizes: A, 6, = 7.41 x 10-3&'/c; V, 
go = 2.22 x 10-*a3/s; M, go = 3.7 x 1 0 - * n 3 / C ;  +, go = 6.17 x 1 0 - 2 g 3 / 6 ;  0 ,  r0 = 8.64 x 1 0 - 2 ~ 3 / ~ .  

travel times lcss than about 0.5a2/e, the time a t  which the tracer first reaches the 
ground in significant quantities. I n  contrast the anisotropy of the velocity covariance 
tensor is likely to  have some effect on the results, but, because the anisotropy is not 
large, the effect is unlikely to be of major importance. In  plotting the experimental 
results in figure 8, cz was taken to be the average of the velocity variances in three 
orthogonal directions. The agreement between the model and experimental results is 
good although, because of the uncertainty in the universal constant C, and the 
arbitrary way in which f was chosen (equation (16)), this may be partly fortuitous. 
It is somewhat surprising that the agreement remains good for t - s  > 0.5a2/e when 
the effect of shear and inhomogeneity might be expected to be significant. The 
observed and modelled behaviour is different to the type of behaviour seen in 
Durbin's model whcre c r c / ( c )  increases monotonically to an asymptotic value. 

Figure 9 shows examples of profiles of crc for a line source with cr,, equal to 
2.22 x 10-2g3/e, the source size used in most of Fackrell & Robins' experiments. As 
time increases the profile evolves through three stages. At first the cr, profile has its 
peak away from the origin a t  the point where the gradient of (c) is greatest. As time 
advances the peak moves towards the origin and, in what will be referred to as the 
second stage, the peak is a t  x = 0. This stage lasts from t--s = 0.05u2/e to 
t - s  = 2a2/e. In the third and final stage, the off-centre peak reappears. A t  all times 
thc crc profile is somewhat wider than the profile of the mean concentration. Similar 
behaviour is observed for other small source sizes, although the time of transition 
between the first and second stages increases with source size. For large sources, with 
cro comparable to cr3/e, the behaviour is somewhat different, the first stage lasting so 
long that it merges into the third stage with the second stage being squeezed out of 
existence. For area sources the second stage begins later and ends earlier while the 
reverse is true for compact sources. I n  the case of compact sources the evidence for 
the reappearance of the off-centre peak is not so clear cut, the peak appearing and 
disappearing repeatedly a t  large times due to the statistical scatter discussed above. 
The first stage in the evolution of cr, is to be expected because, a t  small times after 
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FIGURE 9. Profiles of rc from the model for a line source in stationary conditions. uo = 
2.22 x 10-2r3/a. The numbers attached to the curves indicate values of t--s normalized by u2/e The 
unlabelled curve is a Gaussian distribution with the same standard deviation as the profile of ( c ) .  

release, the fluctuations arise directly from the local gradients of mean concentration. 
Some understanding of the second stage can be obtained by considering (32) and (33). 
These equations imply that the peak will occur off the centreline when 

in particular, since ug < 2 4 ,  the peak must be on the centreline when (T~/ (C)  2 1.  At 
large times p ,  becomes close to Gaussian. If p ,  is exactly Gaussian, then (32), (33) 
and the fact that r1(s I t)/aA(8 I t )  and al(s I t ) / r X ( s  1 t )  tend to unity a t  large t imply that 
the left-hand side of (35) is less than 1 a t  large t (and approaches 1 as t + CO) and so 
explains the reappearance of the peak in the third stage. The reappearance of the off- 
centre peak suggests that at large times gC is again partly determined by local 
processes, with gc peaking in the vicinity of the point where the production of 
concentration variance from the local mean concentration gradient is a maximum. 
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FIGURE 10. Comparison of ue/(c) a t  x = 0 from the model with the experimental data of Warhaft 
(1984). The model results for various source sizes are indicated by the following symbols: A, uo = 
0 . 0 1 ~ ~ ~ ~ ;  ‘I, uo = 0.02a,s; ., no = O.O3u,s; +, uo = 0 . 0 4 ~ ~ ~ ;  0 ,  n,, = 0 . 0 5 ~ ~ ~ .  The experimental 
results of Warhaft (1984) are denoted by crosses. Also shown are the experimental results of Uberoi 
& Corrsin (1952) (U), Townsend (1954) (T) and Stapountzis et al. (1986) (S). 

The data collected by Fackrell & Robins (1982) were obtained at travel times in the 
range O.26g2/e to 1.74cr2/e, times which the model predicts will lie within the second 
stage of evolution. The measured B, profiles are consistent with this, showing a 
centreline peak and a similar form to the model profiles. The width of the model’s gc 

profile is in good agreement with the experimental data;  for the times at  which the 
experimental data was obtained, both the model and the experimental gC profile half- 
widths lie between 1.4 and 1.6 times the half-width of the ( c )  profile. 

6.2. Decaying turbulence 
Figure 10 shows model values of B , / ( c )  a t  x = 0 for dispersion from an area source 
in decaying turbulence. As in the stationary case the values are strongly affected by 
the source size a t  small times, but become independent of source size a t  large times. 
However, in contrast to the results obtained in stationary conditions, crc / (c )  
approaches a small non-zero constant a t  large time. If p,(d,  s 1 t )  is exactly Gaussian 
for t & 5 then (34) holds and this constant can be expressed as 

As noted at the end of $5 ,  gl(s I t ) /aA(s  1 t )  and a,(s 1 t ) / c z ( s  1 t )  do not tend to unity as 
t + co . Hence, because CT? = +(a: + CT;) and because arithmetic means are greater than 
geometric ones, this limit is strictly positive. The simulations indicate that the value 
of this limit is about 0.16. 

The results of Warhaft’s (1984) experiments on dispersion downstream of a cross- 
stream line source in decaying grid turbulence are also plotted in figure 10. In the 
same way as Fackrell & Robins’ (1982) continuous compact source was interpreted 
as an instantaneous line source, the continuous line source of Warhaft’s experiment 
is regarded here as an instantaneous area source. It is not so easy to interpret these 
experiments as those of Fackrell & Robins (1982) because the Reynolds number is 
relatively low and the model being considered here cannot account for molecular 
diffusivity and viscosity explicitly. Molecular diffusion almost certainly results in an 
effective source size that is much larger than the width of the wire used in the 



A stochastic model for the motion of particle pairs 145 

I 

0 I 2 3 

x”(4 +a;)’ 

FIGURE 11 .  Profiles of 6, from the model for an area source in decaying turbulence. = 
0.030,s. The numbers attached to the curves indicate values of ( t - s ) / s .  The unlabelled curve is a 
Gaussian distribution with the same standard deviation as the profile of ( c ) .  

experiments. It seems reasonable to assume that the effective source size will be of 
the same order as the Kolmogorov microscale, 7. The value of y a t  the source varies 
between the experiments, lying between O.O1ass and 0.016aSs. The agreement with 
the model results is best for a slightly larger source size of about 0.03aSs. At large 
times the value of a c / ( c )  in the model falls off rather too quickly. This is probably 
because the asymptotic value a t  large time is too small. Although the agreement 
could almost certainly be improved by adjusting C, and f ,  it is not proposed to do 
this here. The agreement is also poor for ( t - s ) / s  < 0.02. This is however to be 
expected since molecular diffusion must be significant for ( t - s ) / s  of order TJS, a 
quantity which is about 0.04 in the experiments. To model this region accurately it 
would be necessary to take account of molecular diffusivity and viscosity explicitly 
as in Sawford & Hunt (1986) and to use a source size more closely related to the wire 
diameter. Also shown in figure 10 are the experimental results obtained dawnwind of 
a line source in grid turbulence by Uberoi & Corrsin (1952), Townsend (1954) and 
Stapountzis et al. (1986). These data show broadly similar behaviour to Warhaft’s 
data and to the model results. 

Figure 11 shows the model profiles of cc for a. = 0 . 0 3 ~ ~ ~ .  Qualitatively the 
behaviour is similar to that obtained in stationary conditions (figure 9) and to that 
observed by Warhaft (1984). At small ( t - s ) / s  the profiles have an off-centre peak, 
although the model peak is rather more pronounced than in Warhaft’s experiments. 
It seems likely that this discrepancy is due to molecular diffusion which, in the 
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FIGURE 12. Correlation between the concentration resulting from two parallel sources separated by 
a distance d in decaying turbulence. The correlation is evaluated half way between the two sources. 
Model results for a source size of O.O3u,s are indicated by solid symbols and experimental results 
from Warhaft (1984) by open symbols. The different symbol shapes refer to different values of d :  
A. d = 0.122u,s; V, d = 0 . 4 ~ ~ ~ ;  m, d = 1 . 2 6 ~ ~ 8 ;  +, d = 2 . 5 2 ~ ~ ~ ~ ;  0 ,  d = 5 . 2 ~ ~ ~ .  

experiments, must play a significant role in the early stages of the plume’s 
development. To represent these early stages accurately, it is probably necessary, as 
above, to use a source size related to the wire diameter and to use a model which 
includes molecular diffusion and viscous effects explicitly. For 0.11 < ( t - s ) / s  < 0.43 
in the model and for 0.073 ,< (t - s)/s < 1.92 in Warhaft’s experiments, the peak is a t  
the centre of the ensemble average plume, with the off-centre peak reappearing at  
large times. Although the off-centre peak reappears sooner in the model than in the 
experiments, the model peak value is only a few per cent larger than the centreline 
value until ( t - s ) / s  x 2 .  At large ( t - s ) / s  the model off-centre peak is again rather 
more pronounced than that measured in the experiments. As noted above, the off- 
centre peak cannot occur if crc / (c )  is as large as unity, and so i t  seems possible that 
the more pronounced peak in the model is associated with that fact that the value 
of q c / ( c )  in the model is too low a t  large times. The width of the model crc profile is 
in good agreement with the experimental data, the half width in both the model and 
the experiments lying between about 1.5 and 2.0 times the half width of the ( c )  
profilc. 

Figures 12 and 13 show model values of the correlation between the concentrations 
resulting from two parallel instantaneous Gaussian area sources. The sources are 
taken parallel to the (xl, x2)-plane and are separated by a distance d,  with the origin 
(i.e. x = 0) lying midway between the sources. Also shown are experimental values 
for two parallel continuous cross-stream line sources in decaying grid turbulence 
(Warhaft 1984). As for the single sources considered above, the data is interpreted as 
relating to two instantaneous area sources. In  the model the size of each source was 
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FIGURE 13. Correlation between the concentration resulting from two parallel sources separated by 
a distance d in decaying turbulence. The correlation is shown as a function of z3, the origin of x3 
being taken half way between the two sources. (a )  shows model results for ( t - s ) / s  = 1.5 
and experimental results (Warhaft 1984) for ( t - s ) / s  = 1.65, while (b )  shows model results for 
( t - s ) / s  = 4.0 and experimental results for ( t - s ) / s  = 4.65. The model results are shown by solid 
lines and labelled with the value of d/u,s, while the experimental results for different values 
of d are indicated as follows: x , d = 0 . 0 6 1 ~ ~ s ;  +, d = 0.12217,s; A, d = 0.217~s; V, d = 0.417,s; 0, 
d = 0 . 7 ~ ~ ~ ;  0,  d = 1 . 2 6 1 ~ ~ s ;  0, d = 1.76ass. The experimental results are taken from 
Warhaft’s (1984) figure 13 and the values obtained for positive and negative x3 have been 
averaged. 
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taken to be 0.03a,s, the value which gives best, agreement with the single source 
data. The values of the correlation at  the origin are shown in figure 12. The model 
values show very similar behaviour to that observed although there are some 
quantitative differences when the correlation is negative. Figure 13 shows some 
examples of the correlation a t  points away from the origin. The agreement between 
the model and the experiments is again encouraging, although the experimental 
correlation shows less variation with x3 than does the correlation from the model. 

7. Conclusions 
Thr formulation of two-particle stochastic models has been examined and a new 

model designrd for calculating dispersion in isotropic constant-density flows. The 
new model yields a well-mixed distribution of particle pairs in (X, U)-space which is 
consistent with the constant-density constraint and with a physically reasonable 
form for the two-point velocity correlation function. Previous models of t)he form (12) 
(e.g. Durbin 1980; Lee & Stone 1983) are consistent only with well-mixed 
distributions which imply { p 2 )  is infinite or which fail to account for the correlation 
of velocities a t  neighbouring points. The new model shows a more physically 
plausible behaviour for the particle separation p.d.f. which, in contrast to previous 
models of the form (12), agrees with inertial subrange theory. The model is not 
satisfactory in every respect as it violates the physical constraint (21). However the 
dcgree of violation appears to be minor. 

Simulations with the new model show that gc/(c) is strongly dependent on source 
size a t  small t,imes, but becomes independent of source size a t  large times. The 
simulations also suggest that u , / ( c )  tends to  zero in stationary conditions but 
approaches a small non-zero value in decaying turbulence. However, because of 
statistical noise, we cannot be certain of the zero limit in the stationary case. The 
agreement between the model and Fackrell & Robins’ (1982) experimental data is 
encouraging. In  particular, varying the source size has the same effect in the model 
as in the experiments. However the experimental data cannot confirm the zero large- 
time limit for crc/(c) - indeed it is unlikely that experiments will ever confirm this 
since, in reality, inhomogeneities or non-stationarities are nearly always important 
a t  large times. The agreement with Warhaft’s (1984) line source data is not so good, 
but this may be partly due to the low Reynolds number of the experiments. This 
data, which was obtained in decaying turbulence, shows clearly a non-zero limit for 
cr , / (c ) ,  although the value of this limit is rather larger than the model value. The 
model also shows encouraging agreement with the data of Warhaft (1984) on the 
correlation between the concentration from two sources separated in space. 

I would like to thank Professor Philip Chatwin for many useful discussions and 
suggestions. This work forms part of a PhD thesis submitted to  Brunel University. 

Appendix A. Numerical procedure 
The new model described in 54.1 is quite complex to implement because the 

expression for a contains a large number of terms. In  the calculations carried out 
above, the model was simplified by the method used in the one-particle model of 
Thomson (1986a). This involves using a different set of finite-difference equations a t  
alternate timesteps. 
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When the particle separation is large, the timescale on which particle velocities 
change is r and so we require At < T for accurate results. When the particles are close 
together however, the timescalc of the relative motion of particles is much smaller 
than 7 and so a much smaller timestep is required. I n  order to allow for this and also 
avoid unnecessary waste of computing resources, the timestep was made a function 
of the particle separation and was allowed to vary along the particle-pair trajectory. 
The timestep At used in most of the calculations was chosen to be O.lr(1- f ( A ) ) .  This 
ensures that At + 7 at all times and also that At 4 (d'/e)$ when the particle 
separation lies in the inertial subrange ( ( A 2 / e ) i  is the timescale of the eddies which 
make the dominant contribution to the relative motion of the particles). A few 
experiments were conducted with a timestep of 0.05r( 1 - f ( A ) ) .  This resulted in only 
small differences (a few per cent) in most statistics. An exception is the statistic 

shown in figure 4. In  the case where the initial particle separation was 2 x 
a timestep of O.017(1 -f(d)) was found necessary to ensure that the results were 
independent of At. This is to be expected since, with At = 1 - f ( A ) ) ,  the initial 
timestep is about one third of the time interval between the release of the particles 
and the time corresponding to the first data point in figure 4. Clearly the quantity 
16AxI2, which depends on the departure of the trajectories from straight lines (and so 
depends on the difference between two nearly equal quantities), is unlikely to be well 
represented a t  the time of the first data point when the timestep is so large. 

On the occasions when coincident particles needed to be released an initial 
separation of 2 x 10-6Z was used. The results appear insensitive to changes in this 
quantity of an order of magnitude. It is of course impossible to have truly coincident 
particles since this would necessitate a timestep of length zero. 

Thirty thousand particle pairs were followed in all the simulations from which 
p.d.f.s or concentration statistics were calculated, with the exception of the 
simulations involving the 'particle splitting ' technique for which 10000 pairs were 
released. The remaining simulations were used only to calculate quantities such as 
g,, or 1&AxI2. For such quantities statistical noise is not a major problem, and so 
only 10000 pairs were followed in these simulations. 

In calculating (c2) with the approximation (31), p ,  was calculated from 
simulations which utilized the particle splitting technique, and was represented as a 
series of straight line segments between data points, each data point representing thc 
average value of p ,  over a small interval of A values. The distance between data 
points was similar to that used in the graphs shown in figures 1 (b)  and 5 .  The use of 
a much larger distance would tend to smooth the peak in pa observed a t  small travel 
times, while a much smaller distance would greatly increase the scatter. For the area 
and line sources considered in $6, a consequence of (32) and (33) is that gc depends 
on p ,  only through FA and ir, respectively. These quantities do not show such a 
marked peak as p ,  and so the accuracy of the results might be increased by 
calculatingp, and FA with a larger distance between data points as in figures J ( d )  and 
1 ( e )  ; however for simplicity this has not been done here. 
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Appendix B. The relation between 1 8 ~ ~ 1 ~  and 16AxI2 
In  reality, the variance of 6x, and SAX a t  time t can be expressed as 

with 

where ui(t) is the acceleration of particle i and Au = ( u l - a 2 ) / d 2 .  As in $5, the 
average is over particle pairs with a given position in X-space a t  time s. Also 
Aa(s,)~Au(s,) can be written in the form 

For simplicity we will only consider the case where the initial separation lies well 
within the inertial subrange and restrict consideration to travel times over which the 
evolution of Sx, and SAX are dominated by inertial subrange eddies (in the model this 
means, as noted in 95, imposing the restrictions A(5) G I and t - s  4 7). We first recall 
that the acceleration field is only well-correlated over very short lengthscales of the 
order of the Kolmogorov microscale 71 (Monin & Yaglom 1975, 921.5). From this 
Monin & Yaglom (1975, pp. 546-547) and Sawford (1984) argue that the second term 
in (B 1 )  makes a negligible contribution to   SAX(^ for times t - s  4 7. If this is so, it 
follows that 16xJ2 = )SAxI2 for t - s  + 7. Although it is true that u,(s,)~u,(s,) is small, 
the following argument suggests that  i t  may not be n e m b l e  over such times 
- _ _ _  (note i t  is clearly not negligible a t  very large times when )8x,(2 - lu,(s)lz (t-s)' and - IAu(s)I2 ( t -s) , ;  these cannot be equal unless the initial separation is so large 
that the initial velocities of the two particles are uncorrelated). I n  the inertial 
subrange, the Eulerian acceleration covariance ( u ( x ,  t )  .u(x + r ,  t ) )  between the 
acceleration a t  two points separated by a distance r = Irl is proportional to gr-; 
(Monin & Yaglom 1975, p. 371). On dimensional grounds this covariance is expected 
to persist over a time of order s-tr:, i.e. we expect (a@,  s , ) -u(x+r ,  sz)) to  be of order 
&-A for Is1 - s21 < s-fri. Provided that the Eulerian and Lagrangian acceleration 
covariances are of the same order of magnitude and that s1 lies well inside the interval 
[s,t,], this implies that, for two particles with separation r a t  time s,, 

__ 

[ ' a 1 ( s 1 ) - u 2 ( ~ 2 )  (3.9, 

is of order (dr-g) (&) = 6. It follows that, provided t - s  $- ( A ( S ) ~ / E ) ;  (so that the 
acceleration covariance ul(sl)~u2(s2) has time to act), the contribution to ISAxI2 from 
the second term in (B 1 )  is of order st3, which is (on dimensional grounds) comparable 
to ISAxlZ itself. This suggests that the second term in (B 1) is not negligible and that 
 AX)^ is not equal to / S X , ) ~  for times in the range ( A ( S ) ~ / E ) :  4 t--s + 7. 

In fact, for initially coincident particles,  SAX^^ cannot be greater than I S X , ~ ~  and so, 
if we accept the above argument, must be less than ~ S X , ) ~ .  To see this consider a single 
realization and consider all particles in the realization which are a t  y a t  time s. The 

__ 
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phase space trajectories of such particles will be denoted by (x(t), u(t)). The term q1 will 
denote the average of Ix(t)-y-u(s) (t-s)I2 for such particles and p2 will denote the 
average of $lxl(t) -x2(t)I2 for pairs of such particles. q2 is equal to the mean square of 
the displacement Ix(t)--x,,(t)l of such particles relative to their centre of mass x,,(t) 
(Batchelor 1952) and so q1 = q2+IxCM(t)-y-u(s) (t-s)I2 - and, in particular, q1 2 q2.  
Now, for initially coincident particles, 8Ax = Ax and -- so 1 8 ~ ~ 1 ~  and 186~1~ are equal to 
the ensemble average of p1 and q2 respectively. Hence ISX,~~ 2 (8AxI2. Equality is only 
possible if xCM = y + u(s) ( t - s )  in every realization. This seems - unlikely to be true, 
lending further support to the idea that 1 6 6 ~ 1 ~  is less than (Sx1l2. 

For pairs of particles which are not initially coincident, it seems likely that the 
particles will eventually forget their initial separation and behave in the same way 
as initially coincident particles (Batchelor 1952). On dimensional grounds we expect 
this to happen after a time of order (A(S)~/S); (assuming the initial particle separation 
is well within the inertial subrange). Hence, in the case of particles which are not 
initially coincident, the arguments in the previous paragraph support the idea that 
)8AxI2 is less than for travel times t - s  much greater than ( A ( S ) ~ / S ) $ .  
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